Energetics of the HIV gp120-CD4 binding reaction.
نویسندگان
چکیده
HIV infection is initiated by the selective interaction between the cellular receptor CD4 and gp120, the external envelope glycoprotein of the virus. We used analytical ultracentrifugation, titration calorimetry, and surface plasmon resonance biosensor analysis to characterize the assembly state, thermodynamics, and kinetics of the CD4-gp120 interaction. The binding thermodynamics were of unexpected magnitude; changes in enthalpy, entropy, and heat capacity greatly exceeded those described for typical protein-protein interactions. These unusual thermodynamic properties were observed with both intact gp120 and a deglycosylated and truncated form of gp120 protein that lacked hypervariable loops V1, V2, and V3 and segments of its N and C termini. Together with previous crystallographic studies, the large changes in heat capacity and entropy reveal that extensive structural rearrangements occur within the core of gp120 upon CD4 binding. CD spectral studies and slow kinetics of binding support this conclusion. These results indicate considerable conformational flexibility within gp120, which may relate to viral mechanisms for triggering infection and disguising conserved receptor-binding sites from the immune system.
منابع مشابه
Energetics of dendrimer binding to HIV-1 gp120-CD4 complex and mechanismic aspects of its role as an entry-inhibitor
Experiments and computational studies have established that de-protonated dendrimers (SPL7013 and PAMAM) act as entry-inhibitors of HIV. SPL7013 based Vivagel is currently under clinical development. The dendrimer binds to gp120 in the gp120-CD4 complex, destabilizes it by breaking key contacts between gp120 and CD4 and prevents viral entry into target cells. In this work, we provide molecular ...
متن کاملLocal conformational stability of HIV-1 gp120 in unliganded and CD4-bound states as defined by amide hydrogen/deuterium exchange.
The binding reaction of the HIV-1 gp120 envelope glycoprotein to the CD4 receptor involves exceptional changes in enthalpy and entropy. Crystal structures of gp120 in unliganded and various ligand-bound states, meanwhile, reveal an inner domain able to fold into diverse conformations, a structurally invariant outer domain, and, in the CD4-bound state, a bridging sheet minidomain. These studies,...
متن کاملConformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding
The human immunodeficiency virus (HIV) binds to the surface of T lymphocytes and other cells of the immune system via a high affinity interaction between CD4 and the HIV outer envelope glycoprotein, gp120. By analogy with certain other enveloped viruses, receptor binding by HIV may be followed by exposure of the hydrophobic NH2 terminus of its transmembrane glycoprotein, gp41, and fusion of the...
متن کاملThe N-terminal region of the human immunodeficiency virus envelope glycoprotein gp120 contains potential binding sites for CD4.
Human immunodeficiency virus (HIV) vaccines targeted at blocking HIV-CD4 interactions are expected to be less affected by the sequence heterogeneity of HIV than those targeted at variable regions of the envelope outercoat glycoprotein, gp120. All potential CD4 binding sites identified thus far in HIV are localized in the C-terminal region of gp120. In this study we demonstrate that the N-termin...
متن کاملEffects of anti-gp120 monoclonal antibodies on CD4 receptor binding by the env protein of human immunodeficiency virus type 1.
Monoclonal antibodies (MAbs) to defined peptide epitopes on gp120 from human immunodeficiency virus type 1 were used to investigate the involvement of their epitopes in gp120 binding to the CD4 receptor. Recombinant vaccinia viruses were constructed that expressed either full-length gp120 (v-ED6), or a truncated gp120 lacking 44 amino acids at the carboxyl terminus (v-ED4). Binding of these gly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 16 شماره
صفحات -
تاریخ انتشار 2000